Дадим теперь определение операции деления.
Дадим теперь определение операции деления. Пусть даны два отношения R и Т соответственно со схемами: SR = (А1, А2, ... , Ak); ST =-(В1, В2, ... , Вm);
А и В — наборы атрибутов этих отношений, одинаковой длины (без повторений);
А


Пересечение множеств А



Тогда операция деления ставит в соответствие отношениям R и Т отношение
Q = R[A:B]T, кортежи которого являются теми элементами проекции R[A1], для которых Т[В] входит в построенные для них множество образов:
R[A:B]T = {r | r




Операция деления удобна тогда, когда требуется сравнить некоторое множество характеристик отдельных атрибутов. Например, пусть у нас есть отношение R7, которое содержит номенклатуру всех выпускаемых деталей на нашем предприятии, а в отношении R10 хранятся сведения о том, что и в каких цехах действительно выпускается. Поставим задачу определить перечень цехов, в которых выпускается вся номенклатура деталей.
Тогда решением этой задачи будет операция деления отношения R10 на отношение R7 по набору атрибутов (Шифр детали, Наименование детали).
R17 = R10[Шифр детали, Наименование детали: Шифр детали, Наименование детали] R7
R 17 |
Цех |
Цех1 |
Операция деления достаточно сложна для абстрактного представления. Она может быть заменена последовательностью других операций. Действительно, выполним тот же запрос с использованием других операций. Для этого определим последовательность промежуточных запросов, которая приведет нас к конечному результату:
R9 = R7
